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Quantum mechanics II, Problems 9 : Time-Dependent Perturbation

Solutions
TA : Achille Mauri, Behrang Tafreshi, Gabriel Pescia, Manuel Rudolph, Reyhaneh Aghaei Saem, Ricard

Puig, Sacha Lerch, Samy Conus, Tyson Jones

Problem 1 : Time-dependent Perturbation Theory - Perturbed Harmonic Oscillator

Let’s consider a harmonic oscillator described by

Ĥ0 = p̂2

2m + mω2

2 x̂2 (1)

on which a sudden electric field V̂ = −Fx̂ is suddenly applied.

1. Determine the exact transition probability P
ψ

(0)
0 →ψn

between an initial state (ground state of

Ĥ0) and an excited state (exited state of Ĥ = Ĥ0 + V̂ ) following this perturbation.
The trick of this exercise is to notice that V̂tot = mω2

2 x̂2 − Fx̂ can be written as

Vtot(x) = mω2

2 (x− x0)2 + Const. (2)

We can then deduce that the perturbed wave functions ψn(x) will simply be the unperturbed
wave functions ψ(0)

n (x) shifted by :

x0 = F

mω2 . (3)

that is ψn(x) = ψ
(0)
n (x− x0). The goal here is to calculate

∣∣∣〈ψ(0)
0

∣∣∣ψn〉∣∣∣2, where
∣∣∣ψ(0)

0 (x)
〉

is the

unperturbed ground state, and ψn(x) = ψ
(0)
n (x−x0) is the n-th excited state of the perturbed

harmonic oscillator. The eigenstates of the system are well-known and we have in particular :

ψ
(0)
0 (x) =

(
mω

πℏ

)1/4
e

−
mω

2ℏ x2

(4)

ψ(0)
n (x) =

(
mω

πℏ

)1/4 1√
2nn!

e
−
mω

2ℏ x2

Hn

(
x

√
mω

ℏ

)
(5)

with :

Hn(y) = (−1)ney2 dne−y2

dyn . (6)
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Ergo we calculate

〈
ψ

(0)
0

∣∣∣ψn〉 =
∞∫

−∞

ψ
(0)
0 (x)∗ ψn(x) dx =

∞∫
−∞

ψ
(0)
0 (x)∗ ψ(0)

n (x− x0) dx (7)

=
∞∫

−∞

(
mω

πℏ

)1/4
e

−
mω

2ℏ x2 (mω
πℏ

)1/4 1√
2nn!

e
−
mω

2ℏ (x−x0)2

Hn

(
(x− x0)

√
mω

ℏ

)

= 1√
2nn!

1√
π

√
mω

ℏ

∞∫
−∞

e
−
mω

2ℏ (2x2−2xx0+x02)
Hn

(
(x− x0)

√
mω

ℏ

)
dx. (8)

To make this a little prettier, we introduce a change of variables y = x
√

mω
ℏ , such that

dx = dy
√

ℏ
mω and x2 = y2 ℏ

mω . We similarly define constant y0 = x0
√

mω
ℏ , so that our integral

simplifies to

〈
ψ

(0)
0

∣∣∣ψn〉 = 1√
π2nn!

∞∫
−∞

e−y2+y y0− 1
2y02

Hn (y − y0) dy. (9)

We now substitute our given form of the Hermite polynomial, taking care to differentiate then
substitute y − y0 as the argument.

= 1√
π2nn!

∞∫
−∞

e−y2+y y0− 1
2y02(−1)ne(y−y0)2

(
dne−z2

dzn

)
z→y−y0

dy (10)

= (−1)n ey02/2
√
π2nn!

∞∫
−∞

e−y y0

(
dne−z2

dzn

)
z→y−y0

dy (11)

To proceed, we must recognise that(
dne−z2

dzn

)
z→y−y0

= dn

dyn e
−(y−y0)2 (12)

which you can either intuit, or prove by induction. Our integral is now

〈
ψ

(0)
0

∣∣∣ψn〉 = (−1)n ey02/2
√
π2nn!

∞∫
−∞

e−y y0 dn

dyn e
−(y−y0)2dy (13)

= (−1)n e−y02/2
√
π2nn!

∞∫
−∞

e−y y0 dn

dyn e
−y2+2y y0dy (14)

We can evaluate this by repeatedly invoking integration by parts, using

b∫
a

u
dv
dy dy = [u v]ba −

b∫
a

du
dy v dy (15)

2



where u = e−yy0 and (for the first invocation) dv
dy = d

dy
dn−1

dyn−1 e
−y2+2y y0 . A single invocation

produces
∞∫

−∞

e−y y0 dn

dyn e
−y2+2y y0dy =

[
e−y y0 dn−1

dyn−1 e
−y2+2y y0

]∞

−∞
−

∞∫
−∞

(−y0)e−y y0 dn−1

dyn−1 e
−y2+2y y0 .dy

(16)

We next realise that dn−1

dyn−1 e
−y2+2y y0 = P (y)e−y2+2y y0 where P is a polynomial, and ergo that

the left term above vanishes at both end-points :

lim
y→±∞

e−y y0 dn−1

dyn−1 e
−y2+2y y0 = lim

y→±∞
P (y) e−y2+y y0 = 0, (17)

since y2 dominates y, and since the exponentials dominate polynomials. We have shown that
∞∫

−∞

e−y y0 dn

dyn e
−y2+2y y0dy = y0

∞∫
−∞

e−y y0 dn−1

dyn−1 e
−y2+2y y0dy, (18)

making it clear that repeating integration by parts a total of n times yields

= y0
n

∞∫
−∞

e−y y0 d0

dy0 e
−y2+2y y0dy = y0

n

∞∫
−∞

e−y2+y y0dy (19)

which finally, by "completing the square" in the exponent, we recognise as a standard integral ;
that of the error function, shifted, which makes no difference across our infinite domain.

= y0
n e

y0
2

4

∞∫
−∞

e−(y−y0/2)2dy = y0
n e

y0
2

4

∞∫
−∞

e−y2dy = y0
n e

y0
2

4
√
π. (20)

We have ergo shown〈
ψ

(0)
0

∣∣∣ψn〉 = (−1)n e−y02/2
√
π2nn!

y0
n e

y0
2

4
√
π = (−1)n e−y02/4

√
2nn!

y0
n, (21)

and so the transition probability is

P
ψ

(0)
0 →ψn

=
∣∣∣〈ψ(0)

0

∣∣∣ψn〉∣∣∣2 = e−y02/2

2n n! y0
2n ≡ λn

n! e
−λ, (22)

where λ = 1
2y0

2 = F 2

2m ℏω3 . We recognise this as a Poisson distribution with parameter λ.
Note that this probability does not depend on time as we are interested in the transition
probability between an eigenstate of the unperturbed system and an eigenstate of the perturbed
system :

P
ψ

(0)
0 →ψn

=
∣∣∣〈ψn∣∣∣ Û(t)

∣∣∣ψ(0)
0

〉∣∣∣2 =
∣∣∣eitEn/ℏ

〈
ψn
∣∣∣ψ(0)

0

〉∣∣∣2 =
∣∣∣〈ψn∣∣∣ψ(0)

0

〉∣∣∣2 (23)

2. Under what condition does V̂ correspond to a weak perturbation ? In this limit, determine
P
ψ

(0)
0 →ψ1

.
The theory of perturbations is applicable if z ≪ 1. In this case, the dominant transition is
obviously the one to the first excited state, namely P

ψ
(0)
0 →ψ1

≈ z.
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3. Find the expression of P
ψ

(0)
0 →ψ1

using first-order time-dependent perturbation theory and
compare it to the previous result.
To analyze the problem with time-dependent perturbation theory, we can first rewrite V̂ as a
function of time using the Heaviside function (to model the sudden application of V̂ )) :

V̂ (t) := V̂ θ(t− t0) = −θ(t− t0)Fx̂. (24)

Furthermore, we can admit without loss of generality that t0 = 0. The idea is to calculate the
transition probability just after the application of the perturbation :

∣∣∣∣∣
〈
ψ1

∣∣∣∣∣ lim
t→t+0

ÛI(t, t0)
∣∣∣∣∣ψ(0)

0

〉∣∣∣∣∣
2

(25)

=
∣∣∣∣∣
〈
ψ1

∣∣∣∣∣ lim
t→t+0

(
1 − i

ℏ

∫ t

−∞
eiĤ0t′/ℏV̂ e−iE(0)

0 t′/ℏθ(t′ − t0) dt′
)∣∣∣∣∣ψ(0)

0

〉∣∣∣∣∣
2

(26)

=
∣∣∣∣∣〈ψ1|ψ(0)

0

〉
− i

ℏ
lim
t→t+0

∫ t

t0

〈
ψ1

∣∣∣∣eiĤ0t′/ℏV̂ e−iE(0)
0 t′/ℏ

∣∣∣∣ψ(0)
0

〉
dt′
∣∣∣∣∣
2

. (27)

Now, let us rewrite |ψ1⟩ in the eigenbasis of Ĥ0 as |ψ1⟩ =
∑
k≥0 ak|ψ

(0)
k ⟩, and we also define

ωij = (E(0)
i − E

(0)
j )/ℏ for simplicity. Therefore, in previous equation we need to compute the

following terms (for all k ≥ 0) :

lim
t→t+0

∫ t

t0

〈
ψ

(0)
k

∣∣∣∣eiĤ0t′/ℏV̂ e−iE(0)
0 t′/ℏ

∣∣∣∣ψ(0)
0

〉
dt′ =

〈
ψ

(0)
k

∣∣∣V̂ ∣∣∣ψ(0)
0

〉
lim
t→t+0

∫ t

t0
eiωk0t

′ dt′︸ ︷︷ ︸
=0

. (28)

Notice that limt→t+0

∫ t
t0
eiωk0t

′ dt′ vanishes for any k ≥ 0 as for k = 0, we have
∫ t
t0
eiωk0t

′ dt′ =
t− t0, and for k > 0 we have

∫ t
t0
eiωk0t

′ dt′ = (eiωk0t − eiωk0t0)/(iωk0) with ωk0 ̸= 0. Therefore,
the limit of the integral in Eq. (27) vanishes, which leads to∣∣∣∣∣

〈
ψ1

∣∣∣∣∣ lim
t→t+0

ÛI(t, t0)
∣∣∣∣∣ψ(0)

0

〉∣∣∣∣∣
2

=
∣∣∣〈ψ1|ψ(0)

0

〉∣∣∣2 . (29)

We thus recover Eq. (23) from first-order time-dependent perturbation theory.

Note : Let’s calculate - although not necessary - the matrix element V10 := ⟨ψ1|V (x)⟩ψ(0)
0 .

First, let’s recall that

x = 1√
2

√
ℏ
mω

(a† + a), (30)

and we also know that

ψ
(0)
0 (x) = ⟨x|0⟩ ,

ψ
(0)
1 (x) =

〈
x
∣∣∣ a†

∣∣∣0〉 . (31)

The perturbed state ψ1(x), in terms of the unperturbed states, can be written as a linear
combination of ψ(0)

n (x) (i.e., ψ1(x − x0) =
∑
n
anψ

(0)
n (x)). We can therefore conclude that the

only non-zero term in V10 is given by
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V10 = a1

∫ ∞

−∞
ψ

∗(0)
1 (x)Fxψ(0)

0 (x)dx (32)

= a1
mω

ℏ

√
2
π
F

∫ ∞

−∞
x2e

−
mω

ℏ
x2

dx (33)

= a1F
1√
2

√
ℏ
mω

, (34)

where a1 =
∞∫

−∞
ψ

(0)
1

∗ψ1dx.

Problem 2 : Two degenerate states

Let’s consider a system described by a Hamiltonian Ĥ0 with 2 eigenstates ψ(0)
1 and ψ(0)

2 having the
same energy E. We perturb the system as follows : Ĥ = Ĥ0 + V̂ .

1. At first order according to perturbation theory, the eigenstates become :

ψ(0) = c
(0)
1 ψ

(0)
1 + c

(0)
2 ψ

(0)
2 and ψ′(0) = c

′(0)
1 ψ

(0)
1 + c

′(0)
2 ψ

(0)
2 (35)

What are the values of coefficients c(0)
1,2 and c

′(0)
1,2 ?

Here we consider 2 degenerate levels. Perturbation theory tells us to diagonalize the matrix V̂
by defining its elements Vij where {i, j} ∈ {1, 2} in order to determine the first-order energy
correction. We easily find :

E(1) = 1
2
(
V11 + V22 + ℏω(1)

)
(36)

E′(1) = 1
2
(
V11 + V22 − ℏω(1)

)
(37)

with the definition :
ℏω(1) :=

√
(V11 − V22)2 + 4|V12|2. (38)

the corresponding coefficients of the normalized eigenvectors are :

c
(0)
1 = V12√

ℏω(1)
(
ℏω(1)

2 ± (V22−V11)
2

)eiϕ± (39)

c
(0)
2 = ±

√
ℏω(1)

2 ± (V22−V11)
2

ℏω(1) eiϕ± , (40)

which are valid for any phases ϕ± ∈ R. For example, one could use eiϕ± =
√

V21
|V12| to get

(solutions from previous years) :

c
(0)
1 =

√
V12

2|V12|

(
1 ± V11 − V22

ℏω(1)

)
(41)

c
(0)
2 = ±

√
V21

2|V12|

(
1 ∓ V11 − V22

ℏω(1)

)
. (42)
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2. If the initial state is ψ(0)
1 , what is the probability of finding the system in state ψ(0)

2 at time
t ? Show that for short times we obtain :

P1→2(t) = t2

ℏ2 |V21|2. (43)

Going from expressions : ∣∣∣ψ(0)
〉

= c
(0)
1

∣∣∣ψ(0)
1

〉
+ c

(0)
2

∣∣∣ψ(0)
2

〉
(44)∣∣∣ψ′(0)

〉
= c

′(0)
1

∣∣∣ψ(0)
1

〉
+ c

′(0)
2

∣∣∣ψ(0)
2

〉
(45)

which we can use to get ψ(0)
1 as a function of non-disturbed eigenstates :

∣∣∣ψ(0)
1

〉
=
c

′(0)
2

∣∣∣ψ(0)
〉

− c
(0)
2

∣∣∣ψ′(0)
〉

c
(0)
1 c

′(0)
2 − c

′(0)
1 c

(0)
2

, (46)

and so at time t applying the evolution operator Û(t)
∣∣∣ψ(0)

1

〉
, each eigenstates evolves of course

at its own frequency :

∣∣∣ψ(0)
1 (t)

〉
= e− i

ℏEt
c

′(0)
2 e− i

ℏE
(1)t
∣∣∣ψ(0)

〉
− c

(0)
2 e− i

ℏE
′(1)t

∣∣∣ψ′(0)
〉

c
(0)
1 c

′(0)
2 − c

′(0)
1 c

(0)
2

. (47)

and the frequency associated with Ĥ0 introduces a global phase factor. Now we seek the
probability of being in state

∣∣∣ψ(0)
2

〉
at time t, so it is necessary to rework with the eigenstates

by reintroducing (44, 45) into (47), and we take the inner product with

∣∣∣ψ(0)
2

〉
=

−c′(0)
1

∣∣∣ψ(0)
〉

+ c
(0)
1

∣∣∣ψ′(0)
〉

c
(0)
1 c

′(0)
2 − c

′(0)
1 c

(0)
2

, (48)

to find the probability :

P1→2(t) =
∣∣∣〈ψ(0)

2

∣∣∣ψ(0)
1 (t)

〉∣∣∣2 = 4|V21|2

(ℏω(1))2 sin2
(
ω(1)t

2

)
(49)

= 2|V21|2

(ℏω(1))2

[
1 − cos

(
ω(1)t

)]
. (50)

The excitation probability oscillates at frequency ω(1), and in other words, the system oscillates
between its 2 eigenstates. In the case tω(1) ≪ 1, P1→2(t) reduces to :

P1→2(t) = t2

ℏ2 |V21|2 (51)

by expanding the cosine to second order.
3. Retrieve the result (43) through time-dependent perturbation theory.

With a first-order expansion of eitĤ/ℏ in t to immediately recover :
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〈
ψ

(0)
2

∣∣∣ Û(t)
∣∣∣ψ(0)

1

〉
=
〈
ψ

(0)
2

∣∣∣ eitĤ/ℏ ∣∣∣ψ(0)
1

〉
=
〈
ψ

(0)
2

∣∣∣ 1 + itĤ/ℏ
∣∣∣ψ(0)

1

〉
(52)

= it

ℏ

〈
ψ

(0)
2

∣∣∣ Ĥ0 + V̂
∣∣∣ψ(0)

1

〉
= it

ℏ

〈
ψ

(0)
2

∣∣∣ V̂ ∣∣∣ψ(0)
1

〉
(53)

since
〈
ψ

(0)
2

∣∣∣ Ĥ0
∣∣∣ψ(0)

1

〉
= E

〈
ψ

(0)
2

∣∣∣ψ(0)
1

〉
= 0. We then find :

P1→2(t) = t2

ℏ2 |V21|2. (54)
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