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Quantum mechanics 11, Problems 9 : Time-Dependent Perturbation

Solutions

TA : Achille Mauri, Behrang Tafreshi, Gabriel Pescia, Manuel Rudolph, Reyhaneh Aghaei Saem, Ricard
Puig, Sacha Lerch, Samy Conus, Tyson Jones

Problem 1 : Time-dependent Perturbation Theory - Perturbed Harmonic Oscillator

Let’s consider a harmonic oscillator described by
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on which a sudden electric field V = —F# is suddenly applied.

1. Determine the exact transition probability P ONN between an initial state (ground state of
0 n

(0
ﬁo) and an excited state (exited state of H=Hy+ V) following this perturbation.
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The trick of this exercise is to notice that Vtot = "5~1° — F'% can be written as
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Vior (1) = —— (2 = 20)? + Const. (2)

We can then deduce that the perturbed wave functions 1, (x) will simply be the unperturbed
wave functions 1&7(10) (x) shifted by :
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that is ¥, (x) = szLO) (z — xp). The goal here is to calculate )< (()0)‘¢n> , where Wém (CC)> is the

unperturbed ground state, and ¥, (x) = szLO) (z — x0) is the n-th excited state of the perturbed
harmonic oscillator. The eigenstates of the system are well-known and we have in particular :
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Ergo we calculate
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To make this a little prettier we introduce a change of variables y = x/"*, such that

dox = dyq/ — and z? = y ——. We similarly define constant yo = o,/ "5, so that our integral
simplifies to
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We now substitute our given form of the Hermite polynomial, taking care to differentiate then
substitute y — yo as the argument.
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To proceed, we must recognise that
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which you can either intuit, or prove by induction. Our integral is now
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We can evaluate this by repeatedly invoking integration by parts, using
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where u = e and (for the first invocation) dy = dydyr=T
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produces
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We next realise that C?ynnill e V2% — P(y)e ¥ T2U% where P is a polynomial, and ergo that

the left term above vanishes at both end-points :
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since y? dominates y, and since the exponentials dominate polynomials. We have shown that
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making it clear that repeating integration by parts a total of n times yields
(0.) 0 (o]
n — d” 242 n —y2+
= 0 e yyoﬂe V20 4y = ¢ e Y Ty gy (19)
—c0 y —0o0
which finally, by "completing the square' in the exponent, we recognise as a standard integral ;
that of the error function, shifted, which makes no difference across our infinite domain.
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We have ergo shown

—1)" e~ %0°/2 I —1)" e~ v0?/4 .
<¢éo)’1/1n> = (\}W Yo € e ﬁ = (\)/W Yo (21)

and so the transition probability is
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where A = %yo2 = % We recognise this as a Poisson distribution with parameter .

Note that this probability does not depend on time as we are interested in the transition
probability between an eigenstate of the unperturbed system and an eigenstate of the perturbed
System :
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. Under what condition does V correspond to a weak perturbation? In this limit, determine

P .
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The theory of perturbations is applicable if z < 1. In this case, the dominant transition is

obviously the one to the first excited state, namely P OIS
0



3. Find the expression of P ONR using first-order time-dependent perturbation theory and
0

P1
compare it to the previous result.

To analyze the problem with time-dependent perturbation theory, we can first rewrite V asa
function of time using the Heaviside function (to model the sudden application of V")) :
V(t) =Vt —ty) =—0(t —to)Fi. (24)

Furthermore, we can admit without loss of generality that ¢y = 0. The idea is to calculate the
transition probability just after the application of the perturbation :
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Now, let us rewrite |);) in the eigenbasis of Hy as |i)1) = > k>0 aklwlgo)}, and we also define
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following terms (for all £ > 0) :
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wij = (E-(O) — E](-O)) /h for simplicity. Therefore, in previous equation we need to compute the
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Notice that lim, .+ ftf) ¢@mt” ¢’ vanishes for any k > 0 as for k = 0, we have ftto eiwrot’ gt/ =
0

t —tg, and for k > 0 we have ft etwrot’ ¢ = (etwrol — iwkolo) /(juyg) with wig # 0. Therefore,
the limit of the integral in Eq. vanishes, which leads to
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We thus recover Eq. from first-order time-dependent perturbation theory.
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Note : Let’s calculate - although not necessary - the matrix element Vip := (¢1|V(x)) [()0).

First, let’s recall that
p= 6t g (30)
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The perturbed state t1(x), in terms of the unperturbed states, can be written as a linear
combination of %(lo) () (i-e., Y1(x — xz9) = Zanw,(lo) (x)). We can therefore conclude that the

and we also know that
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only non-zero term in Vijg is given by



Vio = a1 [ T 01O () Fa® () da (32)
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where a1 = [ ¢§0)*¢1dx.

Problem 2 : Two degenerate states

Let’s consider a system described by a Hamiltonian Hy with 2 eigenstates 1/1&0) and wéo) having the
same energy E. We perturb the system as follows : H = Hy + V.

1. At first order according to perturbation theory, the eigenstates become :
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What are the values of coefficients ¢} 5 and 0,1(,%) ?
Here we consider 2 degenerate levels. Perturbation theory tells us to diagonalize the matrix V
by defining its elements Vj; where {7, j} € {1,2} in order to determine the first-order energy

correction. We easily find :
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with the definition :
hw® = (Vi) — Va2)? + 4|Vial2. (38)

the corresponding coefficients of the normalized eigenvectors are :
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which are valid for any phases ¢+ € R. For example, one could use e+ = \“%\ to get
(solutions from previous years) :
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2. If the initial state is 1/1%0), what is the probability of finding the system in state wgo) at time
t? Show that for short times we obtain :
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Going from expressions :
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which we can use to get wgo) as a function of non-disturbed eigenstates :
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and so at time ¢t applying the evolution operator U (t) ‘w£0)>, each eigenstates evolves of course
at its own frequency :
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and the frequency associated with Hy introduces a global phase factor. Now we seek the
probability of being in state ‘wéo) at time ¢, so it is necessary to rework with the eigenstates
by reintroducing into (47), and we take the inner product with
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to find the probability :
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The excitation probability oscillates at frequency w®), and in other words, the system oscillates
between its 2 eigenstates. In the case tw(!) < 1, P;_a(t) reduces to :
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by expanding the cosine to second order.

3. Retrieve the result through time-dependent perturbation theory.

With a first-order expansion of etH/h iy ¢ to immediately recover :
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since <¢§O)’ Hy ‘1/150)> =F <1p§0) ‘w§0)> = 0. We then find :
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